An Efficient Framework for Iterative Time-Series Trend Mining

نویسندگان

  • Ajumobi Udechukwu
  • Ken Barker
  • Reda Alhajj
چکیده

Trend analysis has applications in several domains including: stock market predictions, environmental trend analysis, sales analysis, etc. Temporal trend analysis is possible when the source data (either business or scientific) is collected with time stamps, or with time-related ordering. These time stamps (or orderings) are the core data points for time sequences, as they constitute time series or temporal data. Trends in these time series, when properly analyzed, lead to an understanding of the general behavior of the series so it is possible to more thoroughly understand dynamic behaviors found in data. This analysis provides a foundation for discovering pattern associations within the time series through mining. Furthermore, this foundation is necessary for the more insightful analysis that can only be achieved by comparing different time series found in the source data. Previous works on mining temporal trends attempt to efficiently discover patterns by optimizing discovery processes in a single run over the data. The algorithms generally rely on user-specified time frames (or time windows) that guide the trend searches. Recent experience with data mining clearly indicates that the process is inherently iterative, with no guarantees that the best results are achieved in the first run. If the existing approaches are used for iterative analysis, the same heavy weight process would be re-run on the data (with varying time windows) in the hope that new discoveries will be made on subsequent iterations. Unfortunately, this heavy weight re-execution and processing of the data is expensive. In this work we present a framework in which all the frequent trends in the time series are computed in a single run (in linear time), thus eliminating expensive re-computations in subsequent iterations. We also demonstrate that trend associations within the time series or with related time series can

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Risk prediction based on a time series case study: Tazareh coal mine

In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...

متن کامل

A Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast

Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...

متن کامل

Combination of Transformed-means Clustering and Neural Networks for Short-Term Solar Radiation Forecasting

In order to provide an efficient conversion and utilization of solar power, solar radiation datashould be measured continuously and accurately over the long-term period. However, the measurement ofsolar radiation is not available to all countries in the world due to some technical and fiscal limitations. Hence,several studies were proposed in the literature to find mathematical and physical mod...

متن کامل

Speed-up Iterative Frequent Itemset Mining with Constraint Changes

Mining of frequent itemsets is a fundamental data mining task. Past research has proposed many efficient algorithms for the purpose. Recent work also highlighted the importance of using constraints to focus the mining process to mine only those relevant itemsets. In practice, data mining is often an interactive and iterative process. The user typically changes constraints and runs the mining al...

متن کامل

Stock Trend Analysis and Trading Strategy

This paper outlines a data mining approach to analysis and prediction of the trend of stock prices. The approach consists of three steps, namely partitioning, analysis and prediction. A modification of the commonly used k-means clustering algorithm is used to partition stock price time series data. After data partition, linear regression is used to analyse the trend within each cluster. The res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004